Quick background on Rule of Sarrus and Cramer's Rule...
- Rule of Sarrus computes the determinant of a 3x3 matrix.
- Cramer's Rule solves a system of linear equations (where number of equations is equal to number of unknowns) using determinants (which can be obtained from the above Rule of Sarrus). Purple Math has an excellent explanation and use case for Cramer's Rule at: http://www.purplemath.com/modules/cramers.htm
- For a system of three linear equations, one can use the above rules to provide a solution, summarised as the following:
x = det(x)/det(coefficients)
y = det(y)/det(coefficients)
z = det(z)/det(coefficients)
# System of three linear equations
# ax + by + cz = j
# dx + ey + fz = k
# gx + hy + iz = l
# System of three linear equations in matrix notation
# - - - - - -
# | a b c | | x | | j |
# | | | | | |
# | d e f | | y | = | k |
# | | | | | |
# | g h i | | z | | l |
# - - - - - -
# Matrix of Coefficients
# a b c
# d e f
# g h i
# Matrix of Variables
# x
# y
# z
# Matrix of Resulting Values
# j
# k
# l
# Rule of Sarrus
# a b c|a b
# d e f|d e
# g h i|g h
# Rule of Sarrus Index Values
# 0 1 2|0 1
# 3 4 5|3 4
# 6 7 8|6 7
# Determinant
# det(M) = aei + bfg + cdh - gec - hfa - idb
# Cramer's Rule
# | j b c | | a j c | | a b j |
# | k e f | | d k f | | d e k |
# | l h i | | g l i | | g h l |
# ---------, ---------, ---------
# | a b c | | a b c | | a b c |
# | d e f | | d e f | | d e f |
# | g h i | | g h i | | g h i |
import sys
def main():
inputs_dict = {'a':int(raw_input("a:")), 'b':int(raw_input("b:")), 'c':int(raw_input("c:")), 'j':int(raw_input("j:")),
'd':int(raw_input("d:")), 'e':int(raw_input("e:")), 'f':int(raw_input("f:")), 'k':int(raw_input("k:")),
'g':int(raw_input("g:")), 'h':int(raw_input("h:")), 'i':int(raw_input("i:")), 'l':int(raw_input("l:"))}
coeffs_matrix = {'a':inputs_dict['a'], 'b':inputs_dict['b'], 'c':inputs_dict['c'],
'd':inputs_dict['d'], 'e':inputs_dict['e'], 'f':inputs_dict['f'],
'g':inputs_dict['g'], 'h':inputs_dict['h'], 'i':inputs_dict['i']}
x_numerator_matrix = {'j':inputs_dict['j'], 'b':inputs_dict['b'], 'c':inputs_dict['c'],
'k':inputs_dict['k'], 'e':inputs_dict['e'], 'f':inputs_dict['f'],
'l':inputs_dict['l'], 'h':inputs_dict['h'], 'i':inputs_dict['i']}
y_numerator_matrix = {'a':inputs_dict['a'], 'j':inputs_dict['j'], 'c':inputs_dict['c'],
'd':inputs_dict['d'], 'k':inputs_dict['k'], 'f':inputs_dict['f'],
'g':inputs_dict['g'], 'l':inputs_dict['l'], 'i':inputs_dict['i']}
z_numerator_matrix = {'a':inputs_dict['a'], 'b':inputs_dict['b'], 'j':inputs_dict['j'],
'd':inputs_dict['d'], 'e':inputs_dict['e'], 'k':inputs_dict['k'],
'g':inputs_dict['g'], 'h':inputs_dict['h'], 'l':inputs_dict['l']}
# Rule of Sarrus for det_coeffs_matrix
# a b c|a b
# d e f|d e
# g h i|g h
#
det_coeffs_matrix = (coeffs_matrix['a'] * coeffs_matrix['e'] * coeffs_matrix['i'] +
coeffs_matrix['b'] * coeffs_matrix['f'] * coeffs_matrix['g'] +
coeffs_matrix['c'] * coeffs_matrix['d'] * coeffs_matrix['h'] -
coeffs_matrix['g'] * coeffs_matrix['e'] * coeffs_matrix['c'] -
coeffs_matrix['h'] * coeffs_matrix['f'] * coeffs_matrix['a'] -
coeffs_matrix['i'] * coeffs_matrix['d'] * coeffs_matrix['b'])
# Rule of Sarrus for det_x_numerator_matrix
# j b c|j b
# k e f|k e
# l h i|l h
#
det_x_numerator_matrix = (x_numerator_matrix['j'] * x_numerator_matrix['e'] * x_numerator_matrix['i'] +
x_numerator_matrix['b'] * x_numerator_matrix['f'] * x_numerator_matrix['l'] +
x_numerator_matrix['c'] * x_numerator_matrix['k'] * x_numerator_matrix['h'] -
x_numerator_matrix['l'] * x_numerator_matrix['e'] * x_numerator_matrix['c'] -
x_numerator_matrix['h'] * x_numerator_matrix['f'] * x_numerator_matrix['j'] -
x_numerator_matrix['i'] * x_numerator_matrix['k'] * x_numerator_matrix['b'] )
# Rule of Sarrus for det_y_numerator_matrix
# a j c|a j
# d k f|d k
# g l i|g l
#
det_y_numerator_matrix = (y_numerator_matrix['a'] * y_numerator_matrix['k'] * y_numerator_matrix['i'] +
y_numerator_matrix['j'] * y_numerator_matrix['f'] * y_numerator_matrix['g'] +
y_numerator_matrix['c'] * y_numerator_matrix['d'] * y_numerator_matrix['l'] -
y_numerator_matrix['g'] * y_numerator_matrix['k'] * y_numerator_matrix['c'] -
y_numerator_matrix['l'] * y_numerator_matrix['f'] * y_numerator_matrix['a'] -
y_numerator_matrix['i'] * y_numerator_matrix['d'] * y_numerator_matrix['j'])
# Rule of Sarrus for det_z_numerator_matrix
# a b j|a b
# d e k|d e
# g h l|g h
#
det_z_numerator_matrix = (z_numerator_matrix['a'] * z_numerator_matrix['e'] * z_numerator_matrix['l'] +
z_numerator_matrix['b'] * z_numerator_matrix['k'] * z_numerator_matrix['g'] +
z_numerator_matrix['j'] * z_numerator_matrix['d'] * z_numerator_matrix['h'] -
z_numerator_matrix['g'] * z_numerator_matrix['e'] * z_numerator_matrix['j'] -
z_numerator_matrix['h'] * z_numerator_matrix['k'] * z_numerator_matrix['a'] -
z_numerator_matrix['l'] * z_numerator_matrix['d'] * z_numerator_matrix['b'])
x = det_x_numerator_matrix/det_coeffs_matrix
y = det_y_numerator_matrix/det_coeffs_matrix
z = det_z_numerator_matrix/det_coeffs_matrix
print
print "results: "
print "x = " + str(x)
print "y = " + str(y)
print "z = " + str(z)
# Specifies name of main function.
if __name__ == "__main__":
sys.exit(main())
No comments:
Post a Comment